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Abstract. Advancements in convexification and domain-reduction techniques have

significantly enhanced the performance of global optimization solvers for challeng-

ing Mixed-Integer Nonlinear Programming (MINLP) problems. However, the great

potential of these techniques has not yet been fully harnessed in decomposition-

based MINLP solvers. Motivated by this consideration, we propose improving the

performance of the Outer-Approximation (OA) method by integrating several con-

vexification cuts and Bound Tightening (BT) techniques. To effectively solve convex

MINLP problems, both multi-tree and single-tree (i.e., known as the LP/NLP Branch-

and-Bound (B&B) method) settings of the OA method are investigated. Moreover,

the recently developed global OA and global LP/NLP B&B methods are extended

to include these techniques for non-convex MINLP problems. These new methods

have been developed and incorporated into the open-source Mixed-Integer Nonlinear

Decomposition Toolbox for Pyomo-MindtPy. Extensive computational experiments

were conducted using the MINLP benchmark library MINLPLib to validate the effec-

tiveness and reliability of our proposed methods. The results show that incorporating

the convexification and domain reduction techniques into the (global) OA and (global)

LP/NLP B&B methods significantly reduces the computational time and the number

of iterations required for the solution.

Key words: Mixed-Integer Nonlinear Programming, Outer-Approximation,

LP/NLP based Branch and Bound, Domain Reduction
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1. Introduction
Mixed-integer nonlinear programming (MINLP) is a general and powerful modeling framework

designed to optimize both discrete and continuous variables subject to linear and nonlinear con-

straints. Thus, a wide variety of problems are effectively represented using this framework, such

as portfolio optimization (Bonami and Lejeune 2009), unit commitment (Bacci et al. 2024), net-

work design (Bragalli et al. 2012), process synthesis (Kocis and Grossmann 1988), and production

scheduling (Sahinidis and Grossmann 1991). However, solving these problems is computationally

challenging due to (1) the combinatorial complexity introduced by integer variables, (2) the nonlin-

earity present in objective functions and/or constraints, and (3) the possible non-convexity arising

from many practical applications.

Generally, MINLP problems are non-convex by definition due to the inclusion of integer vari-

ables and possible non-convex functions in the objective function and constraints. However, an

MINLP problem is often classified as convex if its continuous relaxation is convex. Algorithms

for convex MINLP problems fall primarily into two categories: Branch-and-Bound (B&B)-based

methods, including B&B (Dakin 1965), Branch-and-Cut (B&C) (Vigerske and Gleixner 2018), and

Branch-and-Reduce (B&R) (Ryoo and Sahinidis 1996); and decomposition-based methods, such

as the Outer Approximation (OA) (Duran and Grossmann 1986), Extended Cutting Plane (ECP)

(Westerlund and Pettersson 1995), Extended Supporting Hyperplane (ESH) (Kronqvist et al. 2016),

Feasibility Pump (FP) (Bonami et al. 2009, Bernal et al. 2020), and Generalized Benders Decom-

position (GBD) (Geoffrion 1972). The success of these methods is evident from the numerous

software implementations available, including BARON (Sahinidis 1996), SCIP (Bestuzheva et al.

2023), ANTIGONE (Misener and Floudas 2014), Couenne (Belotti et al. 2009), SHOT (Lundell

et al. 2022), BONMIN (Bonami et al. 2008), DICOPT (Kocis and Grossmann 1989), MindtPy

(Bernal et al. 2018) and Pajarito (Coey et al. 2020).

Among decomposition methods, the OA method is widely recognized as one of the most reliable

and effective approaches for solving convex MINLP problems. By alternately solving tractable

MILP master problems and nonlinear programming (NLP) subproblems, the OA method iteratively

generates linear inequality constraints to approximate nonlinear constraints using first-order Taylor

extensions. To avoid solving multiple similar MILP master problems that differ only in their

accumulated OA cuts, the Linear Programming and Nonlinear Programming-based B&B (LP/NLP-

B&B) (Quesada and Grossmann 1992) was proposed, also known as the ”single-tree” method.

This method constructs a single B&B tree, where the MILP problem is dynamically updated with
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the newly generated OA cuts, and the NLP subproblems are solved at the integer nodes of the

tree. Besides this, several extensions to OA methods have been proposed, such as quadratic cut

OA (Su et al. 2018), conic-based OA (Coey et al. 2020), regularized OA (Bernal et al. 2022), and

decomposition-based OA (Muts et al. 2020).

Over the decades, B&B-based solvers have significantly improved their performance. They benefit

from the extensive preprocessing, cutting plane, and heuristic techniques developed for MINLP

and inherited from mixed-integer linear programming (MILP) solvers. However, many of these

techniques have not yet been fully leveraged in decomposition-based solvers. While the LP/NLP-

based B&B method can take advantage of the techniques implemented in MILP solvers, to our

knowledge, the effect of the techniques specialized for MINLP has not been tested in decomposition-

based solvers. Moreover, a significant challenge for decomposition methods, including the OA

method, lies in their initialization. Typically, these methods start with a poor approximation with all

nonlinearities relaxed and refine it by accumulating linear constraints. As a result, early iterations

are spent merely obtaining a reasonable approximation of the nonlinear constraints, leading to high

computational costs. For the OA method, the poor approximation may result in infeasible NLP

subproblems in early iterations, and no primal bound can be obtained. Additionally, the OA cuts

generated from these infeasible NLP subproblems are generally not as strong as those derived

from the optimal NLP solutions. In this work, we aim to address this limitation by incorporating

domain-reduction and convexification techniques, strategies proven effective in B&B solvers, to

tighten the initial approximation and reduce computational overhead.

Domain reduction techniques can be classified according to the arguments used. The Feasibility-

based Bound Tightening (FBBT) (Belotti et al. 2012) techniques typically rely on interval arithmetic

and exploit the relationships between the constraints and variable bounds (i.e., through forward

and backpropagation). This iterative process may converge only in the limit; thus, a termination

criterion is usually set based on either the number of iterations or a threshold for improvement. As

a result, infeasible subdomains of the search space can be eliminated while all feasible solutions

are preserved. On the other hand, optimality-based bound tightening (OBBT) (Gleixner et al. 2017,

Zhang et al. 2020) techniques typically require solving convex relaxations of the original problem

to compute the tightest bounds of variables. For instance, the standard OBBT technique tightens the

bounds by solving auxiliary optimization problems for each variable. These problems minimize or

maximize each single variable, considering all problem constraints and a possible objective cut-off.

Since the objective cut-off is included, the OBBT method further eliminates feasible points from the
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search space while ensuring that at least one globally optimal solution is preserved. Additionally,
Marginals-based bound tightening (MBBT) (Puranik and Sahinidis 2017) uses the optimality gap
and dual variable information to derive inequalities that will only cut off feasible points with a worse
objective than the best-known objective. A comprehensive review of common domain reduction
techniques and their implementation on B&B algorithms can be found in Puranik and Sahinidis
(2017).

For non-convex MINLP problems, the first-order Taylor expansion of nonlinear constraints
can no longer guarantee a valid underestimator to the original feasible region. To address this
challenge, global MINLP solvers, such as BARON (Sahinidis 1996), Couenne (Belotti et al. 2009),
and SCIP (Achterberg 2009)) typically implement spatial B&B (sBB) algorithms (Smith and
Pantelides 1999), in conjunction with convexification techniques to construct valid convex and
concave relaxations of non-convex functions. Linearization of convex and concave relaxations
can be further generated. This idea can be extended to the OA method to generate valid cutting
planes for non-convex constraints and tighten the initial approximation. Effective convexification
techniques include piecewise linear relaxation (Floudas 2013),𝛼BB and 𝛾BB (Adjiman and Floudas
1996, Akrotirianakis and Floudas 2004, Maranas and Floudas 1992), the auxiliary variable method
(AVM) (Smith and Pantelides 1997, Tawarmalani and Sahinidis 2013), McCormick relaxation
(McCormick 1976, Tsoukalas and Mitsos 2014) and semidefinite relaxation (SDR) (Tawarmalani
and Sahinidis 2001, Luo et al. 2010). Among these, both the AVM and McCormick relaxations
are generally applicable to non-convex factorable functions. The AVM introduces an auxiliary
variable and a corresponding equality constraint for each intermediate nonlinear factor in the
non-convex function. The convex and concave envelopes obtained from each component can be
further linearized using the sandwich algorithm (Tawarmalani and Sahinidis 2013). In contrast, the
McCormick relaxations use a recursive approach to propagate the relaxations of univariate intrinsic
functions, which maintains the dimension of the original function (Chachuat 2013). Since the
relaxations are generally non-smooth, subgradient propagation is used to determine the valid affine
under- and overestimators for nonlinear relaxations (Smith and Pantelides 1997). Although AVM
incorporates many auxiliary variables and constraints that can lead to increased computational time,
its relaxations have been reported to be at least as tight and, in many cases, tighter than McCormick
relaxations due to repeated terms (Tsoukalas and Mitsos 2014).

Motivated by these considerations, this paper aims to investigate the efficacy of convexification
and domain reduction techniques within the OA and LP/NLP B&B methods, applicable to both
convex and non-convex MINLP problems. More specifically, we want to answer three questions.
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1. Whether bound tightening and convexification techniques can accelerate the convergence of

the OA and LP/NLP B&B methods.

2. Can these two techniques reduce the number of infeasible NLP subproblems that generate

weak polyhedral outer approximations and usually appear in early iterations?

3. If so, is it worth applying these two techniques in terms of solution time?

This work builds upon and draws inspiration from early investigations by Wei et al. (2005), Furman

et al. (2005), Furman (2006). These works explored the use of these methods in both deterministic

and stochastic settings for convex and non-convex MINLP problems, serving as early investigations

of the ideas, though not comprehensively tested. It is understood that domain reduction techniques

can be used during the presolve stage and at each node within the B&B tree, known as the branch-

and-reduce method. Similarly, in the OA method, these techniques can be employed in both the

pre-solve phase and during solving integer-fixed NLP subproblems. However, this work focuses

specifically on the impact of domain-reduction methods at the method’s initialization stage.

The remainder of the paper is organized as follows: Section 2 provides a concise overview of

the OA, LP/NLP B&B, global OA and global LP/NLP B&B, convexification method, and the BT

technique. In Section 3, we introduce our proposed convexification and bound-tightening-based

(global) OA and (global) LP/NLP B&B methods. The implementation of the proposed methods and

the computational results are detailed and presented in Section 4. Finally, conclusions are drawn in

Section 5, and some future research directions are identified.

2. Preliminaries
The general form of a MINLP problem can be written as follows.

min
𝑥,𝑦

𝑓 (𝑥, 𝑦)

𝑠.𝑡. 𝑔 𝑗 (𝑥, 𝑦) ≤ 0,∀ 𝑗 = 1, . . . , 𝑙

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,

𝑥 ∈
[
𝑥, 𝑥

]
⊆ R𝑛,

𝑦 ∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚,

(MINLP)

where 𝑥 and 𝑦 represent continuous and discrete variables, respectively. Their respective upper

and lower bounds are determined by over- and underbars. The objective function 𝑓 (𝑥, 𝑦) and
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constraints 𝑔 𝑗 (𝑥, 𝑦) are potentially nonlinear. Throughout this paper, the nonlinear functions in both

the objective function and constraints are assumed to be differentiable, and no restrictions on their

convexity are set. Thus, if any of the nonlinear functions in problem (MINLP) is non-convex or

if there exists any nonlinear equality constraint, the problem should be regarded as a non-convex

MINLP. Note that the (nonlinear) objective function can always be transformed to a linear one

using the epigraph formulation (i.e., 𝑓 (𝑥, 𝑦) ≤ 𝜇 where the continuous variable 𝜇 represents the

objective value).

2.1. (Global) Outer Approximation

The OA method was initially proposed to solve convex MINLP problems with guaranteed globality

(Duran and Grossmann 1986). It generates an iteratively improving polyhedral approximation of

problem (MINLP), where the nonlinear feasible region is outer approximated by cutting planes. To

guarantee global convergence in convex MINLP problems, it relies on the following assumptions:

(1) the nonlinear objective function and constraints 𝑓 , 𝑔1, . . . , 𝑔𝑙 : R𝑛 × R𝑚 → R are convex and

continuously differentiable; (2) the linear constraints 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏 define a bounded polyhedron

(i.e., all variables must be bounded); and (3) for each feasible integer combination 𝑦, a constraint

qualification holds (e.g., Slater’s condition (Slater 2013)). Herein, we briefly introduce the main

steps of the OA method. For more details, the reader may refer to Duran and Grossmann (1986).

The OA method constructs a polyhedral approximation of the nonlinear feasible region to deter-

mine the values of the integer variables. Once an integer combination is obtained, it is fixed, and

the corresponding continuous variables are determined by solving a continuous optimization prob-

lem. Specifically, the solutions (𝑥𝑘 , 𝑦𝑘 ) obtained in the previous iteration 𝑘 are used to construct

a polyhedral outer approximation of problem (MINLP), where first-order Taylor series expansions

underestimate the nonlinear functions. This results in the following MILP subproblem (i.e., problem

(OA-master)), which is solved to obtain the following integer combination 𝑦𝑘+1. Note that 𝐼𝑘 is the
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index set containing all the nonlinear constraints active at solution (𝑥𝑘 , 𝑦𝑘 ).

min
𝑥,𝑦,𝜇

𝜇

𝑠.𝑡. 𝑓
(
𝑥𝑖, 𝑦𝑖

)
+∇ 𝑓

(
𝑥𝑖, 𝑦𝑖

)T

𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 𝜇 ∀𝑖 = 1, . . . , 𝑘

𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)
+∇𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)T

𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 0 ∀𝑖 = 1, . . . , 𝑘,∀ 𝑗 ∈ 𝐼𝑖

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,

𝑥 ∈
[
𝑥, 𝑥

]
⊆ R𝑛,

𝑦 ∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚,

𝜇 ∈ R

(OA-master)

Due to the assumption of convexity, the polyhedral outer approximation overestimates the original

nonlinear feasible region; thus, the optimal solution of the (OA-master) problem provides a valid

lower bound to the (MINLP) problem (i.e., 𝐿𝐵𝑘+1). Notably, in the first iteration, a continuous

relaxation of the (MINLP) problem is often solved to provide the initial LB (i.e., 𝐿𝐵0) and polyhedral

approximation.

Once the new integer combination 𝑦𝑘+1 is obtained, the following (NLP-I) subproblem can be

constructed by fixing the values of the integer variables. This convex NLP subproblem is solved to

determine the values of the corresponding continuous variables 𝑥𝑘+1.

min
𝑥

𝑓 (𝑥, 𝑦𝑘+1)

𝑠.𝑡. 𝑔 𝑗

(
𝑥, 𝑦𝑘+1

)
≤ 0 ∀ 𝑗 = 1, . . . , 𝑙

𝐴𝑥 + 𝐵𝑦𝑘+1 ≤ 𝑏,

𝑥 ∈
[
𝑥, 𝑥

]
⊆ R𝑛,

(NLP-I)

If the (NLP-I) subproblem is feasible and solved to optimality, its optimum provides a valid upper

bound to the (MINLP) problem (i.e., 𝑈𝐵𝑘+1). It is worth noting that the NLP subproblem may be

infeasible with the given integer values, particularly in early iterations. In this case, an alternative
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feasibility subproblem can be formulated to minimize the norm 𝑝 of the constraint violations 𝑠 (i.e.,

(NLP-f)). Instead, this subproblem is solved to determine the continuous variables 𝑥𝑘+1. However,

since this solution (𝑥𝑘+1, 𝑦𝑘+1) is not feasible for the problem (MINLP), no valid UB can be obtained

in this iteration.

min
𝑥,𝑠

∥𝑠∥𝑝

𝑠.𝑡. 𝑔 𝑗

(
𝑥, 𝑦𝑘+1

)
≤ 𝑠 𝑗 ∀ 𝑗 = 1, . . . , 𝑙

𝐴𝑥 + 𝐵𝑦𝑘+1 ≤ 𝑏,

𝑥 ∈
[
𝑥, 𝑥

]
⊆ R𝑛,

(NLP-f)

When the difference between the upper and lower bounds exceeds the predetermined optimality

gap, the polyhedral outer approximation of the nonlinear feasible region is improved by iteratively

adding new linear constraints to problem (OA-master), which are generated based on the complete

solution (𝑥𝑘+1, 𝑦𝑘+1)) as follows (i.e., (OA-cut).

𝑓

(
𝑥𝑘+1, 𝑦𝑘+1

)
+∇ 𝑓

(
𝑥𝑘+1, 𝑦𝑘+1

)T

𝑥 − 𝑥𝑘+1

𝑦 − 𝑦𝑘+1

 ≤ 𝜇

𝑔 𝑗

(
𝑥𝑘+1, 𝑦𝑘+1

)
+∇𝑔 𝑗

(
𝑥𝑘+1, 𝑦𝑘+1

)T

𝑥 − 𝑥𝑘+1

𝑦 − 𝑦𝑘+1

 ≤ 0 ∀ 𝑗 ∈ 𝐼𝑘+1

(OA-cut)

These linear constraints are often referred to as OA cuts because, due to the convexity assumption,

they can cut off the infeasible parts of the search space. Thus, adding new OA cuts can refine the

polyhedral outer approximation and ensure that the previously obtained integer combination is not

obtained in the subsequent iteration unless it is the optimal integer solution. Note that although the

solutions from the feasibility subproblem (NLP-f) do not necessarily produce a valid UB, they are

still used to generate new OA cuts. Thus, the key of the OA method is the progressive accumulation

of OA cuts, which incrementally narrows the gap between the best LB and UB. Iteratively solving

the (OA-master), (NLP-I), (NLP-f) problems continues until the LB and UB converge because

either a new integer combination should be obtained or the optimality should be verified after each

iteration. The detailed steps of the OA algorithm are summarized in Algorithm 1.
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As mentioned in the introduction section, when the OA method is applied to non-convex MINLP

problems, it cannot be guaranteed to generate a valid polyhedral outer approximation of the non-

convex feasible region; in other words, the OA cuts generated by (OA-cut) may be ineffective and

exclude feasible parts of the search space. Thus, the resulting (OA-master) problem cannot provide a

valid LB and could even become infeasible while the original MINLP problem is feasible. To address

this issue, a McCormick relaxation-based OA method, the Global Outer Approximation (GOA)

method, was recently proposed to guarantee global optimality for non-convex MINLP problems.

Its main idea is to use affine under- and overestimators for the convex and concave McCormick

relaxations of the (MINLP) problem to construct a valid polyhedral outer approximation of the

feasible region defined by the non-convex constraints.

The McCormick relaxation is a general method used to construct convex and concave relax-

ations of non-convex factorable functionsTawarmalani and Sahinidis (2013). It uses the developed

McCormick propagation rules to relax sums, products, univariate compositions, and multivari-

ate compositions in functions (Tsoukalas and Mitsos 2014). Since the relaxations often involve

non-differentiable approximations of non-convex functions, they are generally non-smooth. This

non-smoothness necessitates using subgradient propagation to construct valid affine approxima-

tions at selected linearization points (i.e., in both smooth and non-smooth regions). For instance,

with a given continuous non-convex function 𝑓 : 𝑋 → R, let (1) 𝑓 𝑐𝑣, 𝑓 𝑐𝑐 : 𝑋 → R be a convex

and concave relaxation of 𝑓 on 𝑋 , respectively and (2) 𝑠𝑐𝑣
𝑓
(𝑥), 𝑠𝑐𝑐

𝑓
(𝑥) are a convex and concave

subgradient of 𝑓 𝑐𝑣 , 𝑓 𝑐𝑐 at 𝑥 ∈ 𝑋 , respectively. Then, the affine relaxations of the function 𝑓 can be

derived as in (MC-relaxation). The detailed rules for the calculation of McCormick relaxations and

subgradients can be found in (Mitsos et al. 2009, Tsoukalas and Mitsos 2014).

𝑓 𝑐𝑣 (𝑥) + (𝑠𝑐𝑣 (𝑥))T (𝑥 − 𝑥) ≤ 𝑓 (𝑥), ∀𝑥 ∈ 𝑋

𝑓 𝑐𝑐 (𝑥) + (𝑠𝑐𝑐 (𝑥))T (𝑥 − 𝑥) ≥ 𝑓 (𝑥), ∀𝑥 ∈ 𝑋

(MC-relaxation)

Similar to the procedure of the OA method, the GOA method iteratively solves a sequence of

relaxed MILP master problems and integer-fixed NLP subproblems to determine the complete
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solution of the (MINLP) problem. The major difference is that, in each iteration, the relaxed MILP

master problem is constructed by using the McCormick relaxation-based cuts as follows.

𝑓 𝑐𝑣
(
𝑥𝑘 , 𝑦𝑘

)
+ (𝑠𝑐𝑣𝑓

(
𝑥𝑘 , 𝑦𝑘

)
)T


𝑥 − 𝑥𝑘

𝑦 − 𝑦𝑘

 ≤ 𝜇

𝑔𝑐𝑣𝑗

(
𝑥𝑘 , 𝑦𝑘

)
+ (𝑠𝑐𝑣𝑔 𝑗

(
𝑥𝑘 , 𝑦𝑘

)
)T


𝑥 − 𝑥𝑘

𝑦 − 𝑦𝑘

 ≤ 0 ∀ 𝑗 ∈ 𝐼𝑘

(MC-cut)

It is worth noting that these McCormick relaxation-based cuts cannot necessarily cut off all the

infeasible parts of the nonlinear feasible region. Thus, it is impossible to construct an MILP master

problem that is equivalent to the original MINLP problem; in other words, when the integer values

satisfy the (GOA-master) problem but are not feasible to the (MINLP) problem, the algorithm

will repeat cycling through this integer combination. To guarantee the algorithm’s convergence,

no-good (integer) cuts are introduced to exclude the previously explored integer combinations from

future iterations, as shown in (NoGood-cut). Alternatively, a Tabu list can also be used to exclude

the explored integer combinations.

∑︁
𝑗∈𝑉1

𝑦 𝑗 −
∑︁
𝑗∈𝑉0

𝑦 𝑗 ≤ |𝑉1 | − 1 (NoGood-cut)

where 𝑉1 = { 𝑗 |𝑦 𝑗 = 1|} and 𝑉0 = { 𝑗 |𝑦 𝑗 = 0|}.

With these, the (OA-master) problem is reformulated as the (GOA-master) problem as follows.

While the NLP subproblems should remain the same as the ones in the OA method (i.e., (NLP-I)
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and (NLP-f) subproblems).

min
𝑥,𝑦,𝜇

𝜇

𝑠.𝑡. 𝑓 𝑐𝑣
(
𝑥𝑖, 𝑦𝑖

)
+ (𝑠𝑐𝑣𝑓

(
𝑥𝑖, 𝑦𝑖

)
)T


𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 𝜇 ∀𝑖 = 1, . . . , 𝑘

𝑔𝑐𝑣𝑗
(
𝑥𝑖, 𝑦𝑖

)
+ (𝑠𝑐𝑣𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)
)T


𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 0 ∀𝑖 = 1, . . . , 𝑘,∀ 𝑗 ∈ 𝐼𝑖

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,∑︁
𝑗∈𝑉 𝑖

1

𝑦 𝑗 −
∑︁
𝑗∈𝑉 𝑖

0

𝑦 𝑗 ≤ |𝑉 𝑖
1 | − 1 ∀𝑖 = 1, . . . , 𝑘

𝑥 ∈
[
𝑥, 𝑥

]
⊆ R𝑛,

𝑦 ∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚,

𝜇 ∈ R

(GOA-master)

By using either the no-good cuts or the Tabu list, it ensures that the integer combinations from

the previous iterations �̂� ∈
{
𝑦𝑖 | 𝑖 = 1, . . . , 𝑘 − 1

}
are infeasible to the (GOA-master) problem in the

current iteration 𝑘 . Thus, a new integer combination 𝑦𝑘 can always be obtained. Given that there is

a finite number of integer combinations in the search space of the (MINLP) problem, the algorithm

can converge to the global optimum as long as the NLP subproblems are solved to global optimality

(Kesavan et al. 2004). It is worth noting that using either the no-good cuts or the Tabu list may

potentially cut off feasible points of the original MINLP problem, meaning that the optimum of

the (GOA-master) problem cannot be taken as a valid LB. Thus, after the algorithm converges, an

additional step is required to obtain the valid LB. In this step, the (GOA-master) problem must be

solved again, but with only the (MC-cut) added.

Given the similarities between the OA and GOA methods, the detailed steps of the GOA algorithm

are also summarized in Algorithm 1.

2.2. (Global) LP/NLP-Based Branch and Bound

As demonstrated in the OA method (i.e., Algorithm 1), a new (OA-master) problem must be

constructed in every iteration and then solved to obtain an integer combination. This feature

characterizes the OA method as a multi-tree method. However, it can be observed that (1) the
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Algorithm 1 OA and GOA Algorithms
input: The (MINLP) problem and accepted optimality gap 𝜖 ≥ 0

1: Initialize: 𝑘 = 1, 𝐿𝐵0 = −∞, 𝑈𝐵0 = +∞;

2: Solve the continuous relaxation of the (MINLP) problem to obtain an initial solution x̃, ỹ;

3: Update 𝐿𝐵0 = 𝑓 (x̃, ỹ), generate cutting planes at the initial solution x̃, ỹ according to (cut1),

and construct the (MILP-master2) problem;

4: while 𝑈𝐵𝑘−1 − 𝐿𝐵𝑘−1 > 𝜖 do

5: Solve the (MILP-master2) problem to obtain yk and 𝐿𝐵𝑘 ;

6: Solve the (NLP-I) subproblem with integer variables fixed as yk;

7: if the (NLP-I) subproblem is feasible then

8: Obtain xk and update 𝑈𝐵𝑘 = min
(
𝑓 (xk,yk),𝑈𝐵𝑘−1);

9: else

10: Solve the (NLP-f) feasibility subproblem to obtain xk and set 𝑈𝐵𝑘 =𝑈𝐵𝑘−1;

11: end if

12: Generate cutting planes at the solution xk,yk according to (cut1) and add them to the

(MILP-master2) problem;

13: if GOA algorithm is selected then

14: Generate no-good cuts at the solution xk,yk according to (NoGood-cut) and add them

to the (GOA-master) problem;

15: end if

16: 𝑘 = 𝑘 + 1;

17: end while

18: if GOA algorithm is selected then

19: Solve the (GOA-master) problem without the no-good cuts to obtain the valid LB of the

(MINLP) problem;

20: end if

return Best found solution
Note:1use (OA-cut) for OA and (MC-cut) for GOA. 2use (OA-master) for OA and (GOA-master) for GOA.
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only difference between the (OA-master) problem in the current iteration and the one in the

previous iteration is the addition of some newly generated OA cuts, and (2) most of the total

computational time is usually spent on solving the MILP (OA-master) problem through the B&B

method. Motivated by these, Quesada and Grossmann (Quesada and Grossmann 1992) proposed

a single-tree method (i.e., LP/NLP B&B method) that integrates the OA method within the B&B

method to avoid solving too many similar MILP problems. Its main idea is to construct only a

single B&B tree for the (OA-master) problem, which requires to be updated iteratively with new

OA cuts. Herein, we briefly introduce the main steps of the LP/NLP B&B method.

Similar to the OA method, after obtaining the initial polyhedral outer approximation from the

initialization step, the first (OA-master) problem is constructed, based on which the single B&B

tree is built. Following the standard B&B procedure, a relaxed LP problem is solved in each

node of the search tree, where the integer variables are relaxed as continuous ones and nonlinear

constraints are approximated by using the OA cuts. Once a new incumbent integer solution (𝑥, �̂�)
is found at a specific node, �̂� is taken as a new integer combination 𝑦𝑘 as in the OA method

if it has not been explored. At this point, the best LB of the current B&B tree is considered a

valid LB on the optimum of the original MINLP problem. Then, the (NLP-I) subproblem with

the given integer combination is solved to determine the values of the continuous variables 𝑥𝑘 .

If the (NLP-I) subproblem is feasible, a valid UB and new OA cuts can be obtained based on its

solution; otherwise, the (NLP-f) subproblem is solved to generate only new OA cuts. These new

OA cuts are added to all open nodes of the search tree, and the B&B procedure continues with

an improved polyhedral outer approximation of the nonlinear constraints. It is worth noting that

the LP problem at the node that provided the integer combination 𝑦𝑘 should be resolved with the

improved polyhedral approximation (i.e., resolved after adding the OA cuts generated based on

solution (𝑥𝑘 , 𝑦𝑘 )). However, this node is always pruned since its objective value is either equal to

or worse than the current best UB. The search does not stop until the difference between the best

UB and LB is within the given optimality gap 𝜖 . The detailed steps of the LP/NLP B&B algorithm

are summarized in Algorithm 2.

The LP/NLP B&B method is guaranteed to terminate at the global optimal solution of only

convex MINLP problems (Quesada and Grossmann 1992). Using the same tools mentioned in

Section 2.2, the LP/NLP B&B method can be extended to handle non-convex problems by replacing

the OA cuts with McCormick relaxation-based cuts. The detailed steps of the GLP/NLP B&B

algorithm are also summarized in Algorithm 2.
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Algorithm 2 LP/NLP B&B and GLP/NLP B&B Algorithms
input: The (MINLP) problem and accepted optimality gap 𝜖 ≥ 0

1: Initialize: 𝑘 = 1, 𝐿𝐵0 = −∞, 𝑈𝐵0 = +∞;

2: Solve the continuous relaxation of the (MINLP) problem to obtain an initial solution x̃, ỹ;

3: Update 𝐿𝐵0 = 𝑓 (x̃, ỹ), generate cutting planes at the initial solution x̃, ỹ according to (cut1),

and construct the (MILP-master2) problem;

4: while in the B&B tree of the (MILP-master2) problem and 𝑈𝐵𝑘−1 − 𝐿𝐵𝑘−1 > 𝜖 do

5: if a new incumbent integer solution x̂, ŷ is found then

6: if �̂� ∈
{
𝑦𝑖 | 𝑖 = 1, . . . , 𝑘 − 1

}
then

7: skip the remaining steps and continue the B&B procedure;

8: else

9: obtain 𝑦𝑘 = �̂�, and take the lower bound of the current B&B tree as 𝐿𝐵𝑘 ;

10: end if

11: end if

12: Solve the (NLP-I) subproblem with integer variables fixed as yk;

13: if the (NLP-I) subproblem is feasible then

14: Obtain xk and update 𝑈𝐵𝑘 = min
(
𝑓 (xk,yk),𝑈𝐵𝑘−1);

15: else

16: Solve the (NLP-f) feasibility subproblem to obtain xk and set 𝑈𝐵𝑘 =𝑈𝐵𝑘−1;

17: end if

18: Generate cutting planes at the solution xk,yk according to (cut1) and add them to the current

node and all open nodes of the B&B tree of the (MILP-master2) problem;

19: if GLP/NLP B&B algorithm is selected then

20: Generate no-good cuts at the solution xk,yk according to (NoGood-cut) and add them

to the current node and all open nodes of the B&B tree of the (GOA-master) problem;

21: end if

22: 𝑘 = 𝑘 + 1;

23: end while

return Best found solution
Note:1use (OA-cut) for LP/NLP B&B and (MC-cut) for GLP/NLP B&B. 2use (OA-master) for LP/NLP B&B and (GOA-master)

for GLP/NLP B&B.
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3. Convexification- and Bound-Tightening-Based (G)OA and (G)LP/NLP-Based
B&B

The success of the multi- and single-tree (G)OA methods, as described in Algorithms 1 and 2, relies

on generating tight cuts at the boundary of the nonlinear feasible region defined by the (MINLP)

problem. However, these approaches incur the computational cost of solving numerous NLP sub-

problems. Notably, in the early iterations of the algorithms, only a few linear inequality constraints

(i.e., OA and McCormick relaxation-based cuts) are added to the (OA-master) and (GOA-master)

problems. As a result, the constructed master problems provide only a poor approximation of the

(MINLP) problem; thus, the integer combinations obtained by solving them tend to yield infeasi-

ble (NLP-I) subproblems. Although the (NLP-f) feasibility subproblems are solved instead to find

points closest to the feasible region and then generate the corresponding tightest cuts, these cuts

are generally not as tight as those produced directly at the boundary. Additionally, no valid UB

can be obtained in this case. This inefficiency in convergence increases the computational burden.

Motivated by this consideration, we propose to integrate (1) bound tightening techniques and (2)

pre-generated linear convexification cuts into the (G)OA and (G)LP/NLP B&B methods. The goal

is to reduce the occurrence of infeasible (NLP-I) subproblems and accelerate the convergence of the

algorithms for both convex and non-convex MINLP problems. The details of the proposed methods

are explained below.

Bound tightening is a crucial component of domain reduction techniques. There are two main

approaches: feasibility-based bound tightening (FBBT) and optimality-based bound tightening

(OBBT). They have been proven effective in accelerating the speed of convergence in many opti-

mization solvers by reducing variable domains and eliminating infeasible and inferior subdomains

of the search space (Belotti et al. 2009, Ryoo and Sahinidis 1996). The FBBT techniques pri-

marily rely on interval arithmetic and systematic exploitation of relationships between problem

constraints and variable bounds (i.e., through forward and back propagation) (Belotti et al. 2012).

As a result, infeasible subdomains of the search space can be eliminated while all feasible solutions

are preserved. In contrast, the OBBT techniques typically require solving auxiliary optimization

problems for each variable to compute the corresponding tightest bounds. These auxiliary problems

are generally the convex relaxations of the original problem, where the objective is to minimize

or maximize the single variable subject to all problem constraints (Gleixner et al. 2017). When an

objective cut-off (e.g., using the best-known UB) is incorporated, the OBBT techniques can further

eliminate the feasible points from the search space while ensuring that at least one globally opti-

mal solution remains. One related technique, often referred to in the literature as marginals-based



Peng et al.: Enhanced Outer-Approximation Methods for MINLP via Convexification and Bound Tightening
16 Article submitted to INFORMS Journal on Computing

bound tightening (MBBT), is mainly used in specific contexts where dual variable information is

available (i.e., obtained from solving the convex relaxation of the original problem). It can also

cut off feasible points that have worse objective values than the current best UB. In B&B-based

methods, these bound-tightening techniques not only reduce the size of the search domain but also

strengthen the convex relaxation of the original problem. This usually leads to better LBs and thus

drastically facilitates node pruning. We think that the (G)OA and (G)LP/NLP B&B methods could

benefit from the advantages of reduced variable domains achieved by FBBT, OBBT, and MBBT.

Specifically, tighter bounds can improve the polyhedral outer approximation of the original feasi-

ble region for MILP master problems, particularly during early iterations. For NLP subproblems,

tighter bounds can decrease computational time by narrowing the search space to be explored.

However, it is important to acknowledge that implementing these bound-tightening techniques can

be computationally expensive. In certain circumstances, solving auxiliary problems to compute

tighter variable bounds might offset any gains in the spend of convergence. To manage this trade-off,

we implement these techniques selectively at the root node of the (G)OA and (G)LP/NLP B&B

algorithms (i.e., their initialization stage), which generate the following tighter constraints for the

integer and continuous variables.

𝑥 ∈
[
𝑥′, 𝑥′

]
∈
[
𝑥, 𝑥

]
⊆ R𝑛 (1)

𝑦 ∈
{
𝑦′, . . . , 𝑦′

}
∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚 (2)

Convexification techniques are widely employed to address the computational challenges posed

by non-convexities. These methods are primarily used to construct valid and converging convex and

concave relaxations of the non-convex constraints in the original problem, thereby reformulating

it into a structure suitable for convex optimization solvers and providing a valid LB. Among these

techniques, AVM is a general method to handle non-convex factorable functions. Specifically, it

introduces an auxiliary variable and a corresponding auxiliary equality constraint for each inter-

mediate nonlinear factor of the given function. These introduced auxiliary variables are generally

defined by simple and low dimensional functions, making it computationally efficient to construct

their convex and concave relaxations. Then, the affine under and overestimators for these convex
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and concave relaxations are computed at selected linearization points using their subgradient infor-

mation. With these, a set of linear convexification cuts can be derived and generalized as follows,

which further refines the polyhedral outer approximation of the feasible region defined by the

original problem.

𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 ≤ 𝑑 (3)

Herein, the AVM is also implemented at the initialization stage of the (G)OA and (G)LP/NLP

B&B algorithms to generate the linear convexification cuts. While these cuts are theoretically

redundant for NLP subproblems where the original nonlinear constraints are explicitly considered,

they can help provide a significantly improved polyhedral outer approximation of the original

feasible region at the beginning of the algorithms. It is worth noting that, for each introduced

auxiliary variable, additional constraints for the convex and concave relaxation of the auxiliary

equality constraint must be incorporated into the original problem. Thus, the total number of the

additional linear inequality constraints is ultimately determined by the number of the selected

linearization points. The potential efficiency gains come at the cost of introducing many auxiliary

variables and their corresponding linear inequality constraints, which may increase the overall

computational requirement.

Using the tightened variable bounds and the linear convexification cuts, the (OA-master) problem

is reformulated as the (C-BT-OA-master) problem as follows. Similarly, the (GOA-master) problem
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is reformulated as the (C-BT-GOA-master) problem.

min
𝑥,𝑦,𝜇

𝜇

𝑠.𝑡. 𝑓
(
𝑥𝑖, 𝑦𝑖

)
+∇ 𝑓

(
𝑥𝑖, 𝑦𝑖

)T

𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 𝜇 ∀𝑖 = 1, . . . , 𝑘

𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)
+∇𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)T

𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 0 ∀𝑖 = 1, . . . , 𝑘,∀ 𝑗 ∈ 𝐼𝑖

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,

𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 ≤ 𝑑

𝑥 ∈
[
𝑥′, 𝑥′

]
∈
[
𝑥, 𝑥

]
⊆ R𝑛

𝑦 ∈
{
𝑦′, . . . , 𝑦′

}
∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚

𝜇 ∈ R

(C-BT-OA-master)

min
𝑥,𝑦,𝜇

𝜇

𝑠.𝑡. 𝑓 𝑐𝑣
(
𝑥𝑖, 𝑦𝑖

)
+ (𝑠𝑐𝑣𝑓

(
𝑥𝑖, 𝑦𝑖

)
)T


𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 𝜇 ∀𝑖 = 1, . . . , 𝑘

𝑔𝑐𝑣𝑗
(
𝑥𝑖, 𝑦𝑖

)
+ (𝑠𝑐𝑣𝑔 𝑗

(
𝑥𝑖, 𝑦𝑖

)
)T


𝑥 − 𝑥𝑖

𝑦 − 𝑦𝑖

 ≤ 0 ∀𝑖 = 1, . . . , 𝑘,∀ 𝑗 ∈ 𝐼𝑖

𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,∑︁
𝑗∈𝑉 𝑖

1

𝑦 𝑗 −
∑︁
𝑗∈𝑉 𝑖

0

𝑦 𝑗 ≤ |𝑉 𝑖
1 | − 1 ∀𝑖 = 1, . . . , 𝑘

𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 ≤ 𝑑

𝑥 ∈
[
𝑥′, 𝑥′

]
∈
[
𝑥, 𝑥

]
⊆ R𝑛

𝑦 ∈
{
𝑦′, . . . , 𝑦′

}
∈
{
𝑦, . . . , 𝑦

}
⊆ Z𝑚

𝜇 ∈ R

(C-BT-GOA-master)
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The (NLP-I) and (NLP-f) subproblems are reformulated as the corresponding (C-BT-NLP-I) and

(C-BT-NLP-f) subproblems.

min
𝑥

𝑓 (𝑥, 𝑦𝑘+1)

𝑠.𝑡. 𝑔 𝑗

(
𝑥, 𝑦𝑘+1

)
≤ 0 ∀ 𝑗 = 1, . . . , 𝑙

𝐴𝑥 + 𝐵𝑦𝑘+1 ≤ 𝑏,

𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 ≤ 𝑑

𝑥 ∈
[
𝑥′, 𝑥′

]
∈
[
𝑥, 𝑥

]
⊆ R𝑛

(C-BT-NLP-I)

min
𝑥,𝑠

∥𝑠∥𝑝

𝑠.𝑡. 𝑔 𝑗

(
𝑥, 𝑦𝑘+1

)
≤ 𝑠 𝑗 ∀ 𝑗 = 1, . . . , 𝑙

𝐴𝑥 + 𝐵𝑦𝑘+1 ≤ 𝑏,

𝐷𝑥 + 𝐸𝑦 + 𝐹𝑧 ≤ 𝑑

𝑥 ∈
[
𝑥′, 𝑥′

]
∈
[
𝑥, 𝑥

]
⊆ R𝑛

(C-BT-NLP-f)

Considering that the convexification cuts are redundant in the (C-BT-NLP-I) and (C-BT-NLP-f)

subproblems, we denote the (C-BT-NLP-I) and (C-BT-NLP-f) subproblems as complete-scale NLP

problems; while the subproblems without the convexification cuts are denoted as reduced-scale

NLP problems.

Similar modifications are also applied to the GOA, LP/NLP-B&B, and GLP/NLP-B&B methods

for both convex and non-convex MINLP problems. The detailed steps of these convexification- and

bound-tightening-based algorithms are summarized in Algorithms 3 and 4, which are referred to

as C-BT-(G)OA and C-BT-(G)LP/NLP B&B Algorithms. The major contributions are highlighted

in red.

4. Benchmarking and Results
To evaluate the impact of convexification and domain reduction techniques, we use test instances

from the MINLPLib problem library (Vigerske 2014). Specifically, 434 convex instances and 181

non-convex instances are selected, adhering to the criteria that each instance must have at least one

discrete variable and at least one continuous variable. For clarity in our analysis, we use (r) and (c) to
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Algorithm 3 C-BT-OA and C-BT-GOA Algorithms
input: The (MINLP) problem and accepted optimality gap 𝜖 ≥ 0

1: Initialize: 𝑘 = 1, 𝐿𝐵0 = −∞, 𝑈𝐵0 = +∞;

2: Initialize (C-BT-): Apply bound tightening techniques to obtain the tightened variable bounds,

apply convexification techniques to obtain the linear convexification cuts, and add them to the

(MINLP) problem;

3: Solve the continuous relaxation of the (MINLP) problem to obtain an initial solution x̃, ỹ;

4: Update 𝐿𝐵0 = 𝑓 (x̃, ỹ), generate cutting planes at the initial solution x̃, ỹ according to (cut1),

and construct the (MILP-master2) problem;

5: while 𝑈𝐵𝑘−1 − 𝐿𝐵𝑘−1 > 𝜖 do

6: Solve the (MILP-master2) problem to obtain yk and 𝐿𝐵𝑘 ;

7: Solve the (C-BT-NLP-I) subproblem with integer variables fixed as yk;

8: if the (C-BT-NLP-I) subproblem is feasible then

9: Obtain xk and update 𝑈𝐵𝑘 = min
(
𝑓 (xk,yk),𝑈𝐵𝑘−1);

10: else

11: Solve the (C-BT-NLP-f) feasibility subproblem to obtain xk and set 𝑈𝐵𝑘 =𝑈𝐵𝑘−1;

12: end if

13: Generate cutting planes at the solution xk,yk according to (cut1) and add them to the

(MILP-master2) problem;

14: if C-BT-GOA algorithm algorithm is selected then

15: Generate no-good cuts at the solution xk,yk according to (NoGood-cut) and add them

to the (C-BT-GOA-master) problem;

16: end if

17: 𝑘 = 𝑘 + 1;

18: end while

19: if C-BT-GOA algorithm is selected then

20: Solve the (C-BT-GOA-master) problem without the no-good cuts to obtain the valid LB of

the (MINLP) problem;

21: end if

return Best found solution
Note:1use (OA-cut) for C-BT-OAand (MC-cut) for C-BT-GOA. 2use (OA-master) for C-BT-OA and (GOA-master) for C-BT-

GOA.
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Algorithm 4 LP/NLP B&B and GLP/NLP B&B Algorithms
input: The (MINLP) problem and accepted optimality gap 𝜖 ≥ 0

1: Initialize: 𝑘 = 1, 𝐿𝐵0 = −∞, 𝑈𝐵0 = +∞;

2: Initialize (C-BT-): Apply bound tightening techniques to obtain the tightened variable bounds,

apply convexification techniques to obtain the linear convexification cuts, and add them to the

(MINLP) problem;

3: Solve the continuous relaxation of the (MINLP) problem to obtain an initial solution x̃, ỹ;

4: Update 𝐿𝐵0 = 𝑓 (x̃, ỹ), generate cutting planes at the initial solution x̃, ỹ according to (cut1),

and construct the (MILP-master2) problem;

5: while in the B&B tree of the (MILP-master2) problem and 𝑈𝐵𝑘−1 − 𝐿𝐵𝑘−1 > 𝜖 do

6: if a new incumbent integer solution x̂, ŷ is found then

7: if �̂� ∈
{
𝑦𝑖 | 𝑖 = 1, . . . , 𝑘 − 1

}
then

8: skip the remaining steps and continue the B&B procedure;

9: else

10: obtain 𝑦𝑘 = �̂�, and take the lower bound of the current B&B tree as 𝐿𝐵𝑘 ;

11: end if

12: end if

13: Solve the (C-BT-NLP-I) subproblem with integer variables fixed as yk;

14: if the (C-BT-NLP-I) subproblem is feasible then

15: Obtain xk and update 𝑈𝐵𝑘 = min
(
𝑓 (xk,yk),𝑈𝐵𝑘−1);

16: else

17: Solve the (C-BT-NLP-f) feasibility subproblem to obtain xk and set 𝑈𝐵𝑘 =𝑈𝐵𝑘−1;

18: end if

19: Generate cutting planes at the solution xk,yk according to (cut1) and add them to the current

node and all open nodes of the B&B tree of the (MILP-master2) problem;

20: if C-BT-GLP/NLP B&B algorithm is selected then

21: Generate no-good cuts at the solution xk,yk according to (NoGood-cut) and add them

to the current node and all open nodes of the B&B tree of the (C-BT-GOA-master) problem;

22: end if

23: 𝑘 = 𝑘 + 1;

24: end while

return Best found solution
Note:1use (OA-cut) for C-BT-LP/NLP B&B and (MC-cut) for C-BT-GLP/NLP B&B. 2use (OA-master) for C-BT-LP/NLP

B&B and (GOA-master) for C-BT-GLP/NLP B&B.
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distinguish between the reduced- and complete-scale NLP subproblems used in the convexification-

and bound-tightening-based OA and LP/NLP-B&B methods. Moreover, we indicate the results

with convexification cuts considered with the prefix (C-). The benchmark implementation is based

on the Mixed-integer nonlinear decomposition toolbox for Pyomo - MindtPy (Bernal et al. 2018).

We evaluate both the multi-tree and single-tree settings of the OA and GOA strategies, maintaining

their default configurations as the baseline. Furthermore, we integrate two implementations of the

convexification and BT techniques for MINLP problems in MindtPy. The first implementation is

based on a particular version of BARON 19.4.4, the state-of-the-art commercial MINLP solver.

Instead of completely solving the MINLP model, we use the particular version of BARON to

preprocess it and obtain an MINLP with tightened bounds and pre-generated convexification cuts.

Both options dolocal and numloc are set to 0 to turn off local search during upper bounding and

preprocessing in BARON. All range reduction and relaxation options retain their default settings.

Thus, linear FBBT, nonlinear FBBT, and MBBT are applied, as well as the outer approximations of

convex univariate functions and cutting planes. The second implementation uses Coramin (Bynum

et al. 2020) and the FBBT (C++) code in Pyomo, both of which are open-source and offer more

flexibility. We evaluate the enhancements brought about by the convexification cuts and FBBT

to the OA and LP/NLP B&B methods, both individually and in combination. When combined,

the nonlinear FBBT is first applied once, followed by Coramin to perform the AVM and generate

the initial OA cuts based on the reformulation at the initialization stage. This implementation is

accessible via the mindtpy-coa-coramin branch of Pyomo. It offers three configurable options:

use fbbt, use obbt, and use convex relaxation, which enable FBBT, OBBT, and convex-

ification cuts, respectively. For the algorithm termination criteria, we set the absolute optimality

tolerances 𝜖 = 10−5 and the relative optimality tolerance 𝜖𝑟𝑒𝑙 = 10−3, along with a time limit of

900 seconds. We use GUROBI 11.0.2 as the MILP solver, IPOPTH 3.14 as the NLP solver for

convex instances, and BARON 23.6.22 as the NLP solver for non-convex instances. All tests ran

on a Linux cluster with 48 AMD EPYC 7643 2.3GHz CPUs and 1 TB RAM, with each test

restricted to using only a single thread. The PAVER report of the benchmark results is available at

https://secquoia.github.io/Convexification-based-OA-Benchmark.

The comparison of the number of instances solved to optimality between the proposed methods

and baseline methods is presented in Table 1. The percentage in the table represents the improve-

ment of the proposed method over the corresponding baseline method. For the C-LP/NLP-B&B-

BARON(r) and C-LP/NLP-B&B-BARON(c) method, it is worth noting that the convexification

https://secquoia.github.io/Convexification-based-OA-Benchmark
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and bound tightening processes in BARON result in IPOPTH failure in the st test1, st test2,

st testgr1, st testgr3, st testgr4 instances (Tawarmalani and Sahinidis 2013, Shectman

1999). This makes both these methods underperform the baseline. Overall, the convexification and

bound tightening techniques are beneficial to all the OA (+6.6%), GOA (+21.8%), LP/NLP-B&B

(+0.9%), and GLP/NLP-B&B (+36.5%) methods, helping to solve more instances to optimality

within the timelimit.

The time and iteration performance profiles of the (C-)OA methods and the (C-)LP/NLP-B&B

methods for the convex instances are presented in Figure 1 - 4. Particularly, regarding the LP/NLP-

B&B method, the number of iterations refers to the number of subproblems (NLP-I) solved. Overall,

the C-OA methods, regardless of the convexification and FBBT implementations used, outperform

the standard OA method. The C-OA-BARON(r) method emerges as the best, demonstrating that

the presolve implementation in BARON is more efficient than those in Coramin and the FBBT

code in Pyomo, as expected. The C-OA-BARON(r) method and the C-OA-BARON(c) method

achieve similar performance in terms of iterations, while the C-OA-BARON(r) method is superior

in solution time. This observation supports our previous assertion that the convexification cuts are

redundant and increase the computational complexity of subproblems (NLP-I) and (NLP-f). This

is further illustrated by the benchmark results of the (C-)LP/NLP-B&B methods in Figures 3 and 4,

where the C-LP/NLP-B&B-BARON(c) method underperforms in solution time compared with the

standard LP/NLP-B&B method. The deterioration results from the fact that generally, more NLP

subproblems are solved in the LP/NLP-B&B method compared with the OA method, combined

with the IPOPTH failure induced by BARON presolve. Since the choice between complete-scale

and reduced-scale NLP subproblems only increases the complexity of the NLP subproblems, there

is no significant difference in the iteration performance between the C-OA-BARON(r) and C-OA-

BARON(c) methods.

When FBBT is applied alone, neither the OA method nor the LP/NLP-B&B method benefits in

terms of the solution time and iterations. However, FBBT can improve performance when combined

with convexification cuts. In the iteration profiles, both the C-OA-BARON(r) and C-OA-BARON(c)

methods outperform the C-OA-FBBT-Coramin(r) method, which means that BARON presolve

generates tighter relaxations than Coramin. For simple instances solvable within 5 seconds, both the

standard OA method and the LP/NLP B&B method are more efficient than their convexification-

based counterparts due to the additional processing time required for both the bound tightening and

the generation of convexification cuts. However, bound tightening and convexification techniques
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Table 1 Comparison of instances solved to optimality: proposed methods vs. baseline methods

Method Number of instances solved to optimality

OA 319

OA-FBBT 320 (+0.3%)

C-OA-Coramin(r) 334 (+4.7%)

C-OA-FBBT-Coramin(r) 338 (+6.0%)

C-OA-BARON(r) 340 (+6.6%)

C-OA-BARON(c) 338 (+6.0%)

LP/NLP-B&B 347

LP/NLP-B&B-FBBT 345 (-0.6%)

C-LP/NLP-B&B-Coramin(r) 350 (+0.9%)

C-LP/NLP-B&B-FBBT-Coramin(r) 348 (+0.3%)

C-LP/NLP-B&B-BARON(r) 346 (-0.3%)

C-LP/NLP-B&B-BARON(c) 335 (-3.5%)

GOA 55

GOA-FBBT 61 (+10.9%)

C-GOA-Coramin(r) 64 (+16.4%)

C-GOA-FBBT-Coramin(r) 67 (+21.8%)

C-GOA-BARON(r) 67 (+21.8%)

C-GOA-BARON(c) 65 (+18.2%)

GLP/NLP-B&B 52

GLP/NLP-B&B-FBBT 57 (+9.6%)

C-GLP/NLP-B&B-Coramin(r) 68 (+30.8%)

C-GLP/NLP-B&B-FBBT-Coramin(r) 70 (+34.6%)

C-GLP/NLP-B&B-BARON(r) 71 (+36.5%)

C-GLP/NLP-B&B-BARON(c) 68 (+30.8%)

generally enhance the performance of both the OA and LP/NLP B&B methods for convex MINLP

instances.
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Figure 1 Time performance profile of the (C-)OA method for convex instances

0 5 10 15
0

100

200

300

400

C
o
n
v
ex

in
st
a
n
ce
s
so
lv
ed

w
it
h
in

0
.1
%

o
f
o
p
ti
m
a
l
so
lu
ti
o
n

Number of iterations

20 100 500 1,800

C-OA-Baron(c)(338)
C-OA-Baron(r)(340)

C-OA-Coramin(r)(334)
C-OA-FBBT-Coramin(r)(338)

OA-FBBT(320)
OA(319)

OA C-OA-Baron(c) C-OA-Baron(r)

OA-FBBT C-OA-Coramin(r) C-OA-FBBT-Coramin(r)

Figure 2 Iteration performance profile of the (C-)OA method for convex instances

The time and iteration performance profiles of the GOA method and the GLP/NLP-B&B method

for non-convex instances are presented in Figures 5 - 8. For non-convex problems, it is common that

the algorithm finds the optimal solution but cannot close the gap within the time limit, resulting in

noticeable jumps at 900 seconds in Figures 5 and 7. Like the convex cases, the convexification-based

GOA and GLP/NLP B&B methods utilizing reduced-scale NLP subproblems outperform their

standard counterparts in solution time and number of iterations. The advantage is even more pro-

nounced compared to the convex benchmark results. However, in contrast to the convex benchmark
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Figure 3 Time performance profile of the (C-)LP/NLP-B&B method for convex instances
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Figure 4 Iteration performance profile of the (C-)LP/NLP-B&B method for convex instances

results, we noted that FBBT is more beneficial to both the GOA method and the GLP/NLP method

for non-convex instances, with significant improvements observed when FBBT is applied alone. As

we know, non-convex MINLP instances are generally more challenging to solve. We noticed that

the standard GOA method and the GLP/NLP B&B method are less efficient even for simple MINLP

instances, highlighting the importance of applying bound tightening and convexification techniques

even for small non-convex MINLP instances. Overall, consistent performance in convex and non-

convex MINLP problems demonstrates the effectiveness of the proposed convexification-based OA

and LP/NLP B&B methods.
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Figure 5 Time performance profile of the (C-)GOA method for convex instances
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Figure 6 Iteration performance profile of the (C-)GOA method for convex instances

The performance of the proposed methods on large instances is further analyzed in Table 2,

considering solution time, number of iterations, and number of infeasible (NLP-I) subproblems.

Instances that failed or were solved within 10 seconds by the baseline methods are excluded from

the analysis. The percentages in the table represent the improvement of the proposed method over

the corresponding baseline method. The performance index of each method is calculated using

the shifted geometric mean, with a shift value of 10, consistent with the Mittelmann benchmarks.

Among the four group methods, the BARON-based convexification and bound-tightening imple-
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Figure 7 Time performance profile of the (C-)GLP/NLP-B&B method for non-convex instances
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Figure 8 Iteration performance profile of the (C-)GLP/NLP-B&B method for non-convex instances

mentation with reduced-scale (NLP-I) subproblem performs the best on large instances overall.

Additionally, we observe that the number of infeasible (NLP-I) subproblems can be significantly

reduced by more than 60% when convexification and bound-tightening techniques are applied. This

reduction of infeasible subproblems allows stronger cuts to be generated at the early stage and less

time to be spent solving the feasibility subproblems. Consequently, these factors contribute to the

algorithm converging in fewer iterations and less time.
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Table 2 Performance indexes of the proposed methods on large instances

Method Solution time # of iterations # of infeasible subproblems

OA 126.8 29 7.6

OA-FBBT 130.1 (+2.65%) 28.8 (-0.97%) 7.5 (-0.46%)

C-OA-Coramin(r) 121.4 (-4.26%) 21.3 (-26.53%) 5.4 (-28.12%)

C-OA-FBBT-Coramin(r) 130.7 (+3.15%) 21.8 (-24.94%) 5.4 (-28.74%)

C-OA-BARON(r) 93.6 (-26.18%) 13.4 (-53.74%) 2.0 (-73.71%)

C-OA-BARON(c) 102.2 (-19.37%) 13.2 (-54.52%) 1.9 (-74.73%)

LP/NLP-B&B 71.2 121.9 9.8

LP/NLP-B&B-FBBT 64.8 (-9.01%) 120.1 (-1.47%) 10.0 (+1.49%)

C-LP/NLP-B&B-Coramin(r) 51.1 (-28.26%) 78.5 (-35.66%) 7.5 (-23.84%)

C-LP/NLP-B&B-FBBT-Coramin(r) 50.2 (-29.57%) 75.0 (-38.52%) 7.6 (-22.73%)

C-LP/NLP-B&B-BARON(r) 43.4 (-39.05%) 49.7 (-59.25%) 3.6 (-62.82%)

C-LP/NLP-B&B-BARON(c) 57.5 (-19.33%) 50.0 (-58.98%) 3.5 (-64.64%)

GOA 587.2 59 12

GOA-FBBT 518.1 (-11.76%) 53.6 (-9.20%) 8.7 (-27.90%)

C-GOA-Coramin(r) 511.2 (-12.94%) 41.6 (-29.47%) 7.7 (-35.77%)

C-GOA-FBBT-Coramin(r) 454.9 (-22.53%) 41.0 (-30.44%) 6.2 (-48.44%)

C-GOA-BARON(r) 448.3 (-23.65%) 40.4 (-31.48%) 6.1 (-49.45%)

C-GOA-BARON(c) 444.4 (-24.31%) 39.9 (-32.33%) 6.4 (-46.38%)

GLP/NLP-B&B 671.3 227.5 17.2

GLP/NLP-B&B-FBBT 660.3 (-1.64%) 236.8 (+4.10%) 16.6 (-3.52%)

C-GLP/NLP-B&B-Coramin(r) 616.2 (-8.21%) 163.1 (-28.29%) 9.6 (-44.44%)

C-GLP/NLP-B&B-FBBT-Coramin(r) 592.5 (-11.74%) 164.0 (-27.89%) 7.5 (-56.44%)

C-GLP/NLP-B&B-BARON(r) 554.4 (-17.42%) 151.5 (-33.42%) 6.9 (-59.58%)

C-GLP/NLP-B&B-BARON(c) 575.7 (-14.24%) 128.7 (-43.43%) 6.2 (-63.72%)

5. Conclusion
This work explores the impact of convexification and bound tightening techniques implemented in

B&B-based solvers on the OA and the LP/NLP-B&B methods. These effects were investigated for

variations of these methods in solving both convex and non-convex MINLPs to global optimality.

The proposed convexification- and bound-tightening-based OA and LP/NLP-B&B methods are

implemented within the open-source solver MindtPy. Our benchmarking results highlight significant

improvements by domain reduction techniques in enhancing the efficiency of the OA and LP/NLP-
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B&B methods, observed by reducing computational times and the number of iterations required

to solve convex and non-convex MINLP problems to global optimality. These results highlight the

value of implementing domain reduction techniques, which are successful for B&B methods in

MINLP decomposition algorithms. Additionally, the idea of tightening the feasible region of the

master problem at the presolve stage can also be applied to other cutting plane methods and cutting-

plane-based decomposition methods, such as Benders decomposition and generalized Benders

decomposition methods. An interesting direction is how to generate effective and reasonable-scale

cuts to accelerate the convergence of these iterative methods.
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